The 2015 renovation of Texas A&M University’s Kyle Field was at that time the largest ever collegiate sports project in the United States. The $485 million, 26-month redevelopment project included completely rebuilding the college stadium in two phases to expand capacity to 102,733 seats, making the stadium one of the five largest in collegiate football.

“Most large projects come with a series of challenges,” says Craig Kaufman, principal at Populous, the architect for the project. “For Kyle Field, budget and schedule were at the top of the list.”

Populous and Manhattan-Vaughn JV (the construction team) were challenged to find creative ways to reduce cost and risk over the project’s 26-month timeline, which covered two active football seasons. According to project requirements, the renovation was not allowed to affect the team’s ability to play games in the stadium, which meant site congestion and traffic had to be kept at a minimum.

FAN FEEDBACK

Along with meeting deadlines, the owners wanted to be sure the design reflected the expectations of the fans. The feedback of more than 24,000 fans shaped the design and amenities in this $485 million project.

To achieve the classic red-brick façade design, brick was cut and set into precast concrete panels that were brought to the site and erected. The architectural precaster worked with the brick manufacturer early in the process, which provided a competitive advantage that allowed the precaster to produce slightly ahead of the schedule requirement. Kaufman notes that the structural precast concrete seating sections were prefabricated during the football season and delivered to the site for installation as soon as the whistle blew at the last game of the season.

“If this renovation had occurred 100 years ago, it would have been all cast-in-place and hand-laid brick,” Kaufman notes. That approach would have roughly doubled the construction schedule and labor costs, and it would have filled the project site with workers, trucks, and extensive noise. By using precast concrete, the project team was able to stay on budget and schedule, and the field stayed in operation throughout construction with minimal disruption.

“Precast concrete seating and exterior components were the most cost-efficient, durable, and aesthetically pleasing products on the market,” Kaufman says. Precast concrete was, therefore, “a perfect match for our design objectives.”
OWNER:
Texas A&M University,
College Station, Tex.

PCI-CERTIFIED PRECAST CONCRETE PRODUCERS:
Enterprise Precast Concrete, Corsicana, Tex.
enterprisePrecast.com
Heldenfels Enterprises, Inc., San Marcos, Tex.
heldenfels.com

PRECAST CONCRETE SPECIALTY ENGINEER:
Consulting Engineers Group (CEG), San Antonio, Tex.

ARCHITECT:
Populous, Kansas City, Mo.

ENGINEER OF RECORD:
Walter P Moore,
Houston, Tex.

GENERAL CONTRACTOR:
Manhattan Vaughan JV,
Dallas, Tex.

PCI-CERTIFIED ERECTOR:
Precast Services,
Twinsburg, Ohio
precastServices.com

PROJECT COST:
$485 million

PROJECT SIZE:
1.3 million ft²